Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers

نویسندگان

  • Joshua D. Levin
  • Dean Fiala
  • Meinrado F. Samala
  • Jason D. Kahn
  • Raymond J. Peterson
چکیده

Genomes are becoming heavily annotated with important features. Analysis of these features often employs oligonucleotides that hybridize at defined locations. When the defined location lies in a poor sequence context, traditional design strategies may fail. Locked Nucleic Acid (LNA) can enhance oligonucleotide affinity and specificity. Though LNA has been used in many applications, formal design rules are still being defined. To further this effort we have investigated the effect of LNA on the performance of sequencing and PCR primers in AT-rich regions, where short primers yield poor sequencing reads or PCR yields. LNA was used in three positional patterns: near the 5' end (LNA-5'), near the 3' end (LNA-3') and distributed throughout (LNA-Even). Quantitative measures of sequencing read length (Phred Q30 count) and real-time PCR signal (cycle threshold, C(T)) were characterized using two-way ANOVA. LNA-5' increased the average Phred Q30 score by 60% and it was never observed to decrease performance. LNA-5' generated cycle thresholds in quantitative PCR that were comparable to high-yielding conventional primers. In contrast, LNA-3' and LNA-Even did not improve read lengths or C(T). ANOVA demonstrated the statistical significance of these results and identified significant interaction between the positional design rule and primer sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant–Associated Fungi

The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant-associated fungi due to the similar homologies of sequences in primer-annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structu...

متن کامل

Locked nucleic acids in PCR primers increase sensitivity and performance.

The incorporation of locked nucleic acids (LNAs) into oligonucleotide primers has been shown to increase template binding strength and specificity for DNA amplification. Real-time PCR and DNA sequencing have been shown to be significantly enhanced by the use of LNAs. Theoretically, increasing primers' binding strength may also increase the sensitivity of conventional PCR, reducing minimum templ...

متن کامل

Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA...

متن کامل

Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays.

The effect of locked nucleic acid (LNA) modification position upon representative DNA polymerase and exonuclease activities has been examined for potential use in primer extension genotyping applications. For the 3'-->5' exonuclease activities of four proofreading DNA polymerases (Vent, Pfu, Klenow fragment and T7 DNA polymerase) as well as exonuclease III, an LNA at the terminal (L-1) position...

متن کامل

Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006